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Abstract
A tight-binding model is developed to describe the electron–phonon coupling
in atomic wires under an applied voltage and to model their inelastic current–
voltage spectroscopy. Particular longitudinal phonons are found to have greatly
enhanced coupling to the electronic states of the system. This leads to a large
drop in differential conductance at threshold energies associated with these
phonons. It is found that with increasing tension these energies decrease, while
the size of the conductance drops increases, in agreement with experiment.

1. Introduction

Point-contact spectroscopy [1] is a technique that allows one to probe the phonon structure
of small metallic contacts through electrical measurements. In essence, the technique works
as follows. The current through the system is recorded as a function of applied voltage. As
the voltage reaches the energies of individual phonon modes, electrons become able to excite
these modes by losing energy to them. As each such inelastic electron–phonon scattering
mechanism is activated, with increasing voltage, the differential resistance of the contact
increases, mapping out the phonon bandstructure.

Recently, there has been interest, both experimentally and theoretically, in the mechanical
and electrical properties of metallic atomic chains. Theoretically, current-induced forces [2]
and local power dissipation [3] in such systems have been studied. In [3] electron–phonon
coupling is modelled by treating the atomic vibrations as Einstein independent oscillators.
In this paper, we generalize the formalism to allow electrons to couple to the full, extended
phonon modes of a nanojunction. The formalism is implemented in a tight-binding model [4, 5],
developed earlier to describe simultaneously mechanical properties and electrical conduction
in nanojunctions made of simple metals. The inelastic current–voltage spectra of Au atomic
chains between two electrodes are calculated,as a function of tension. The results are compared
with experiment [6, 7].

We find that the bond strengths, as quantified by the corresponding dynamical response
matrix elements, exhibit great variations down the chain. As a consequence, at least in chains
with lengths up to a few atoms, phonons are not free waves, but rather quasi-bound vibrations in
subsections of the chain. Electrons couple preferentially to two particular types of longitudinal
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Figure 1. The set-up considered in the paper. The details are discussed in the text.

chain phonon, resulting in clearly defined features in the inelastic current–voltage curves.
Tension affects both the voltages at which these features occur, and the magnitude of the
features.

2. Method

The system that we consider is shown in figure 1. We have an atomic chain, connected via
two dome-shaped contacts to semi-infinite metallic electrodes. The contact atoms are shown
as darker circles, for clarity. The electrodes have an fcc crystal structure with a (111) surface.
In figure 1 the chain contains nine atoms. Each dome-shaped contact is made of two fcc (111)
layers of atoms. The layer adjoining the chain contains three atoms and the layer adjoining
the electrode contains six atoms.

This system is described by a self-consistent single-orbital tight-binding model, fitted to the
cohesive energy and lattice parameter of bulk Au [5]. This model gives an excellent description
of the elastic properties of bulk Au [5]. For a linear Au chain the model gives an equilibrium
bond length and a cohesive energy that agree with density functional calculations [2]. Finally,
for a linear Au chain the model predicts an ultimate tensile strength [2] that agrees both with
density functional calculations and with experiment [8].

The calculations in the paper consist broadly of two parts. In the first part we calculate the
phonon modes for a given structure. In the second, we calculate the electron–phonon coupling
and its effect on the differential conductance of the structure.

2.1. Phonon modes

The calculation of the phonon modes starts with a relaxation of the geometry for a given
separation between the electrodes. At the applied voltages of interest here, of the order of
tens of millivolts, the largest current-induced forces in the junction would be of the order of
10−3 eV Å−1 [2]. Therefore, we ignore any effects of the current on the actual nature of the
phonon modes, and the relaxation is carried out at zero current. In this paper only the chain
atoms and the contact atoms are allowed to relax, but in principle arbitrarily large sections of
each electrode, adjoining the junction, may be included in the relaxation. The calculation of
the tight-binding electron Green function, electron density matrix and interatomic forces in
the electrode–junction–electrode system is described in [4]. Once the relaxation is complete,
the tension in the system may be obtained directly as the total force exerted on either electrode
by the rest of the system.

The next step is to calculate the dynamical response matrix. In principle, because the
electrode–junction–electrode system is infinite, this matrix is of infinite rank. However, in
the present calculations we consider explicitly only the elements of the full dynamical matrix
which connect relaxed atoms. These matrix elements form a finite matrix, K, with discrete
eigenvalues. Like the set of relaxed atoms, the size of K can be made arbitrarily large, without
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any change to the formalism below. Further comments on this point will be made later in the
paper. The matrix elements of K are computed by displacing each of the relaxed atoms from
its equilibrium position and calculating the resultant force on each of the other relaxed atoms.
Thus, if atom m is displaced in direction µ by an amount δRmµ and this induces a force δFnν

on atom n in direction ν, then this defines the dynamical matrix element Knνmµ by the equation

Knνmµ = −δFnν/δRmµ. (1)

The calculation of δFnν , and hence of the dynamical response matrix K and the resultant
phonon modes, discussed below, is done fully self-consistently, within the approximation of
local charge neutrality [4, 5].

In principle, the matrix K is symmetric, and hence Hermitian. In practice, errors, such
as imperfect relaxation and the use of a finite value for δRmµ in the above equation (in the
present calculations |δRmµ| = 0.005 Å), result in small asymmetries in K. Among the subset
of matrix elements of K larger than about 1 eV Å−2, which we could nominally take as being
the physically significant ones in the system, the worst asymmetries are of the order of 10%.
These asymmetries are removed by setting each of Knνmµ and Kmµnν equal to the average of
the two calculated values.

The phonon Hamiltonian for the system may now be written as

Hz =
∑
n,ν

p2
nν/2Mn +

∑
n,ν,m,µ

unν Knνmµumµ/2. (2)

Here, unν and pnν are the displacement and momentum of atom n in direction ν. Mn is the
mass of the atom. In the present case all atomic masses are the same, Mn = M , and equal to
that of the Au atom. If the atomic masses are not the same, then the formalism may be reduced
to the present one by making the scaling transformations p′

nν = pnν/
√

Mn , u′
nν = unν

√
Mn ,

K ′
nνmµ = Knνmµ/

√
Mn Mm . In terms of the primed quantities the formalism is then equivalent

to the present one with M equal to the unit mass.
The phonons are quantized by imposing

[umµ, pnν] = ih̄δmnδµν. (3)

In what follows it will occasionally be convenient to employ a single index, i , instead of the
double index nν, used to label the atomic displacements and momenta, in such a way that there
is a unique value of i for every nν. Let now M j i be component i of eigenvector j , normalized
to unity, of the dynamical matrix, so that∑

i

KliM j i = K jM jl (4)

where K j is the eigenvalue corresponding to eigenvector j . The matrix M is unitary. In what
follows, index j will always be used to label phonon modes. Index j has the same number
of values as index i = nν, used to label the original atomic degrees of freedom. For a given
j and a given i = nν, M j i gives the normalized amplitude of phonon mode j at atom n, in
direction ν. The angular frequency, ω j , of phonon mode j is given by

ω2
j = K j/M. (5)

For a perfectly relaxed, mechanically stable system all K j must be positive. In practice,
a small number of small negative eigenvalues may occur, corresponding to small amounts
of residual instability in the system, due to imperfect relaxation. Typically, the number of
negative eigenvalues is of the order of one per cent of the total number of eigenvalues, and
the magnitude of the largest negative eigenvalue does not exceed one per cent of the largest
positive eigenvalue. These artificial modes, as well as the modes with positive eigenvalues of
magnitude less than that of the largest negative eigenvalue, are excluded from the rest of the
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calculation. The residual instabilities due to imperfect relaxation, and any resultant unphysical
modes, mask the lowest-energy true phonon modes of the system. However, none of our central
findings on inelastic current–voltage characteristics depend on the lowest-energy modes and
we do not consider their exclusion from the calculation significant.

We now introduce the phonon creation and annihilation operators

A†
j =

∑
i

(√
Mω j /2h̄M j i ui − i

√
1/2h̄Mω jM∗

j i pi
)

(6)

A j =
∑

i

(√
Mω j /2h̄M∗

j i ui + i
√

1/2h̄Mω jM j i pi
)

(7)

which satisfy [A j , A j ′] = [A†
j , A†

j ′] = 0 and [A j , A†
j ′] = δ j j ′. The eigenvectors of K, and

hence the matrix M, may always be chosen to be pure real, but in the notation here we have
allowed M to be a general complex Hermitian matrix. Equations (6) and (7) may be inverted
to give

ui =
∑

j

√
h̄/2Mω j (M j i A j + M∗

j i A†
j ) (8)

pi =
∑

j

i
√

Mh̄ω j/2(−M j i A j + M∗
j i A†

j). (9)

The phonon Hamiltonian may now be expressed in diagonal form as

Hz =
∑

j

(A j A†
j + A†

j A j)h̄ω j/2. (10)

2.2. Electron–phonon coupling and differential conductance

The electron–phonon interaction is treated perturbatively, in a way similar to that in [3]. In the
unperturbed state, every phonon mode is given a degree of thermal excitation defined by the
quantity

N j = 〈A†
j A j〉 (11)

where the angular brackets designate thermal averaging.
To define the unperturbed state of the electron subsystem, we imagine that the ions are

frozen at their equilibrium positions. The electronic structure of the system is described by
the same single-orbital tight-binding model as used to calculate the phonon modes above. The
electron Hamiltonian is written as

He =
∑
m,n

|m〉Hmn〈n| (12)

where |n〉 is the tight-binding positional basis state at atomic site n. The electron eigenstates
for the electrode–junction–electrode system can be divided into two classes [4, 9, 10]. The
states in one class, {|ψ1〉} with energies {E1}, consist of a right-travelling wave, incident in the
left electrode upon the junction, then partially reflected back into the left electrode and partially
transmitted into the right electrode, and conversely for the other class, {|ψ2〉} with energies
{E2}. To set up current flow we imagine that a battery of voltage W is connected across the
electrodes in figure 1. The battery populates the states {|ψ1〉} and {|ψ2〉} with Fermi–Dirac
occupation functions f1(E) and f2(E) = f1(E + eW ), with electrochemical potentials µ1 and
µ2 = µ1 − eW , respectively. Like the calculation of the dynamical matrix and the phonon
modes in section 2.1, the calculation of the unperturbed state of the electron subsystem is done
self-consistently, within the approximation of local charge neutrality [4, 5, 10]. The variable
parameters in the self-consistency are the onsite energies {Hnn}. The intersite Hamiltonian



Inelastic current–voltage spectroscopy of atomic wires 735

matrix elements Hmn = Hnm are functions of the interatomic distance and are parameters of
the model [4, 5].

The electronic structure of the current-carrying electrode–junction–electrode system in
the absence of electron–phonon interactions is thus described by the density operator

ρ(W ) =
∫

f1(E)D1(E) dE +
∫

f2(E)D2(E) dE (13)

where D1(E) = ∑
1 |ψ1〉δ(E − E1)〈ψ1| and D2(E) = ∑

2 |ψ2〉δ(E − E2)〈ψ2| are the partial
density of states operators associated with the two classes of electron states. Rather than
calculating the states {|ψ1〉} and {|ψ2〉} explicitly, one may use scattering theory [9] to express
D1(E) and D2(E), and the total density of states operator D(E) = D1(E) + D2(E), directly
in terms of the Green function for the electrode–junction–electrodesystem as follows [10, 11]:

2π iD1(E) = P1G−(E) − G+(E)P1 + G+(E)(P2 He P1 − P1 He P2)G−(E) (14)

2π iD2(E) = P2G−(E) − G+(E)P2 + G+(E)(P1 He P2 − P2 He P1)G−(E) (15)

2π iD(E) = D1(E) + D2(E) = G−(E) − G+(E). (16)

Here, P1 = ∑
1 |1〉〈1| and P2 = ∑

2 |2〉〈2|, where indices 1 and 2 run over all atoms to the
left and to the right, respectively, of an arbitrary open surface through the electrode–junction–
electrode system [10, 11]. P1 and P2 satisfy P1 + P2 = 1, where 1 is the identity operator
within the Hilbert space spanned by the orthogonal positional basis {|n〉}. G±(E) are given
by G±(E) = G(E ± iε), where ε is an infinitesimally small real positive number and G(z)
satisfies (z − He)G(z) = G(z)(z − He) = 1. G±(E) are calculated by a standard numerical
procedure, described in [4].

To describe the electron–phonon interaction,we treat the electrons as independent particles
and introduce the electron–phonon coupling term

Vez =
∑
n,ν

Vnνunν (17)

where

Vnν =
∑
m �=n

(|n〉〈m| + |m〉〈n|)∂ Hnm/∂ Rnν. (18)

Here, Rn = (Rnx , Rny, Rnz) is the position of the ion, and the derivative in equation (18) is
evaluated with the ions at their equilibrium positions. In terms of the phonon creation and
annihilation operators, introduced earlier, Vez may be expressed as

Vez =
∑
i, j

√
h̄/2Mω j (M j i A j + M∗

j i A†
j )Vi (19)

where we have used the convention i = nν, introduced earlier, so that Vi in equation (19) is
the same as Vnν in equation (18).

In equation (18), as in our earlier work [3, 12], we have ignored the dynamical self-
consistent screening of the electron–phonon interaction. When an atom is displaced, the
effective tight-binding electron Hamiltonian changes in two separate ways. First, the hopping
integrals change, due to their explicit dependence on the atomic positions. Second, the onsite
energies change, due to their self-consistent dependence on the charge redistribution that
accompanies atomic motion. This happens in a steady-state Born–Oppenheimer picture [4].
It would happen also in dynamical pictures, such as the non-perturbative time-dependent
tight-binding formalism of [13], although of course the actual onsite energy variations in
these pictures will not be the same. However, in the present treatment of the electron–phonon
interaction we have made a compromise. The electron–phononcoupling term in equations (17)
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and (18) includes the bare, unscreened perturbation to the electron Hamiltonian, which arises
from the explicit parametric dependence of the hopping integrals on atomic displacements.
But the subsequent perturbative calculation, described below, does not include any attempt
to describe the dynamical self-consistent additional changes to the electron Hamiltonian that
accompany the inelastic electron–phonon scattering.

When the electron–phonon interaction is switched on, two types of process may occur. In
one electrons absorb phonons, and in the other electrons emit phonons. Consider processes in
which a single quantum is absorbed out of phonon mode j . By standard first-order perturbation
theory the total rate of such processes is

J −
j = (4π/h̄)

∑
α,β

N j fα(1 − fβ)|〈ψβ |� j |ψα〉|2δ(Eβ − Eα − h̄ω j ) (20)

where a factor of two for electron spin degeneracy has been included and � j is given by

� j =
∑

i

√
h̄/2Mω jM j i Vi . (21)

In equation (20), |ψα〉 and |ψβ〉 each run over all states {|ψ1〉} and {|ψ2〉}, introduced earlier,
and fα( fβ) is the occupation of |ψα〉(|ψβ 〉). Similarly, the total rate of processes in which a
quantum is created in phonon mode j is

J +
j = (4π/h̄)

∑
α,β

(N j + 1) fα(1 − fβ)|〈ψβ |�†
j |ψα〉|2δ(Eβ − Eα + h̄ω j ). (22)

This lowest-order perturbative calculation is valid in the limit where the mean time spent by
an electron in the nanojunction is smaller than the electron–phonon scattering time therein.
This limit may be safely assumed for the systems considered here [3].

As a simplification compatible with experiment [6, 7], we now take the low-temperature
limit, in which N j → 0. That leaves only the second type of process, discussed above. Let us
now for definiteness take eW > 0, corresponding to an electron particle current from left to
right. Using the form of the population functions f1 and f2, introduced earlier, invoking the
partial density of states operators D1 and D2, and ignoring variations in the electron Green
function over energies of the order of h̄ω j and eW , for the total inelastically scattered particle
current from the class of states {|ψ1〉} to the class {|ψ2〉} we find

δ J =
∑

j

(4πe/h̄)(eW − h̄ω j )θ(eW − h̄ω j ) Tr[D1� j D2�
†
j ] (23)

where θ is the step function, with θ(x) = 0 for x < 0, θ(x) = 1 otherwise.
In the limit of weak elastic backscattering, which is the limit of interest here, the change in

conductance caused by the inelastic scattering may now be obtained as follows. In the ballistic
limit, the states from class {|ψ2〉} describe electrons which, once they enter the junction, are
fully transmitted into the left electrode. Then the current δ J in equation (23) is the same as the
current of incident electrons that are inelastically backscattered into the left electrode. Hence,
the inelastic differential conductance is given by

σ = σ0 − e dδ J/dW = σ0 − (e2/π h̄)
∑

j

4π2θ(eW − h̄ω j ) Tr[D1� j D2�
†
j ] (24)

where σ0 is the zero-voltage conductance. Here, we have ignored any variations with W in
the elastic differential conductance, which may be expected to be negligible in nearly ballistic
atomic wires, in the voltage range of interest [14].

Equation (24) would have to be revised if the elastic transmission in the system is
significantly less than its ideal ballistic value, as, for instance, in the case of inelastic electron
tunnelling spectroscopy [15, 16]. In that case, the states {|ψ2〉} describe electrons which
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Figure 2. Inelastic differential conductance for the nine-atom chain junction from figure 1
at tensions of T1 = 0.48 eV Å−1 (solid curve), T2 = 0.56 eV Å−1 (dashed curve) and
T3 = 0.68 eV Å−1 (dotted curve). The overall elongation applied to the system is 0.09 Å in
going from tension T1 to T2, and 0.07 Å from T2 to T3.

undergo elastic scattering in the nanojunction and which, therefore, emerge partly on the left
and partly on the right of the junction. Thus, the inelastically scattered electrons from states
{|ψ1〉} into states {|ψ2〉} are then further divided between the two electrodes, so that δ J in
equation (23) is then not the same as the inelastically backscattered current reaching the left-
hand electrode. This may be seen by considering the limit where the elastic transmission
across the junction is vanishingly small. Then the states {|ψ1〉} are almost entirely contained
on the left, and the states {|ψ2〉} on the right. In that limit, therefore, the inelastically induced
current δ J in equation (23) actually provides an additional mechanism for moving electrons
from left to right, resulting in an effective increase in conductance.

In the present study, however, we are interested in the ballistic limit, described by
equation (24). We see from that equation that σ as a function of W consists of a series of
drops. Each drop corresponds to a particular phonon mode, j , and occurs when eW = h̄ω j .
Physically, as was stated earlier, each conductance drop reflects the increase in resistance that
takes place as the respective electron–phonon scattering channel is activated.

3. Results and discussion

Figure 2 shows the differential conductance of the nine-atom chain geometry from figure 1
at three different tensions. At each tension, we see two principal conductance drops, labelled
as I and II on the plot. Figure 3 shows a plot of the phonon modes that are responsible for
these two dominant conductance drops. We will refer to the mode in the top plot, which
corresponds to conductance feature I, as mode I, and to the other mode as mode II. The modes
in figure 3 are for the lowest tension but the corresponding modes for the other two tensions
are essentially the same. Let us first consider the qualitative features of these results. We
see that both modes in figure 3 are longitudinal, at least within the chain. The reason for this
may be seen from equations (17) and (18). In any one-dimensional structure with uniaxial
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Figure 3. The phonon modes responsible for conductance drops I (top plot) and II (bottom plot)
for tension T1 = 0.48 eV Å−1 in figure 2.

symmetry, such as the chain, the electron Hamiltonian is stationary with respect to small
transverse displacements of the atoms. Hence, the only non-vanishing terms in equation (17)
are ones that involve longitudinal atomic displacements: in a linear one-dimensional chain
electrons can only couple to longitudinal vibrations.

Let us now consider the nature of the phonon modes in figure 3. Mode I is an Einstein-
like, localized vibration involving primarily the two end atoms in the chain, atoms A and F.
In mode II, the dominant displacements are those of atoms B and C, and D and E. Therefore,
mode II may be thought of as a dimer-like vibration involving the second and second-to-last
chain bond, bonds BC and DE. This view of mode II is not unique. For example, one might
also think of mode II as a standing wave with a wavelength of eight-thirds of a bond length.
However, especially in view of the special properties of bonds BC and DE discussed below,
we believe that the dimer-like picture of mode II is, physically, an accurate one and we will
continue to employ it in the rest of the paper.

Insight into the origin of these modes may be gained by inspecting the elements of
the dynamical response matrix. Figure 4 shows these matrix elements, in magnitude, for
the nearest-neighbour bonds in the chain3. The actual nearest-neighbour dynamical matrix
elements are negative numbers, reflecting the fact that if an atom is displaced, its nearest
neighbours experience forces pushing them in the same direction as the displaced atom.
Figure 4 shows that, in agreement with previous calculations [2], the first and last bonds
within the chain are by far the weakest in the system, whereas the second and second-to-last
chain bonds are the strongest. This follows from a general property of metallic bonding:
3 It must be appreciated that although the tight-binding Hamiltonian is short ranged [2, 4, 5], the resultant force
constants are not. The force constants that appear in the matrix K are second derivatives of the energy of the system.
They contain long-ranged contributions that arise from gradients of the density matrix. The lower the dimensionality of
the system, the more long-ranged the effect of perturbations in the Hamiltonian on the density matrix. For instance, the
Hamiltonian in the chain extends only to first neighbours, but the elements of K between second-nearest neighbours
in the chain can be as large, in magnitude, as 30% of the nearest-neighbour elements. For qualitative purposes, as in
the discussion in connection with figure 4, it can be conceptually useful to think in terms of the nearest-neighbour
elements of K, and to interpret these elements as effective pairwise springs between atoms. But one must not forget
that in reality this is a simplification. For instance, in the numerical calculation of the phonon modes it is necessary
to include the full long-ranged structure of K, as is done here.
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Figure 4. The nearest-neighbour longitudinal dynamical matrix elements, proportional to the
length of the bar, for bonds in the chain from figure 1, under a tension of T1 = 0.48 eV Å−1. The
longest bar corresponds to a dynamical matrix element of −10.6 eV Å−2.

Figure 5. The electronic local density of states at each site in the system from figure 1, under a
tension of T1 = 0.48 eV Å−1. The local density of states is proportional to the radius of the circle.
The largest circle on the plot corresponds to a local density of states, excluding spin degeneracy,
of 0.084 eV−1.

bond strength increases with decreasing coordination number [2]. Atoms A and F have four
neighbours each, making their bonds weaker than any other bond in the chain. As a result,
during relaxation bonds AB and EF stretch, which further increases the relative strength of
bonds BC and DE.

One may thus think of the two end atoms in the chain, A and F, as being the most loosely
bound atoms in the system. The Einstein-like phonon mode in the top plot in figure 3 can,
accordingly, be thought of as a localized low-frequency rattle of these loosely bound atoms in
their respective cages. The reason why electrons couple to this mode strongly, as reflected by
the large resulting conductance drop in figure 2, is the large zero-point vibrational amplitude
that goes with the low frequency of this floppy mode, and the large resultant electron–phonon
scattering cross-section. Mode II in figure 3, on the other hand, is a high-frequency dimer-like
vibration of the two strongest bonds in the system, BC and DE. The reason why electrons
couple strongly to this mode may be seen by inspecting the local electronic density of states,
shown in figure 5. Bonds BC and DE are strong not only from the point of view of the phonons,
but also from that of the electrons. An enhanced bond strength results in a reduced bond length,
which in turn results in an enhanced electronic Hamiltonian matrix element for the bond. Thus,
the two strong bonds, each sandwiched between a pair of weaker ones, act as local resonant
traps for electrons. Electrons, accordingly, tend to spend an increased length of time in the
strong bonds, BC and DE. This is reflected in the increased local density of states at atoms B
and C, and D and E. The enhanced residence time for electrons in bonds BC and DE raises
the local electron–phonon scattering rates [3]. Thus, phonon mode II, localized in these very
bonds, finds a lively response from the electrons, giving rise to the substantial conductance
feature in figure 2. We have repeated the calculation for a chain of length eight atoms. We
have found that the main conductance drops are located at similar voltages to those of drops I
and II in figure 2. The corresponding phonon modes once again are an Einstein-like mode
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involving the two end atoms in the chain and a mode involving dimer-like vibrations in the
two strongest chain bonds. A difference from the nine-atom chain is the appearance of slightly
more pronounced conductance jumps at intermediate voltages in the eight-atom case, as well
as a lower overall conductance (about 0.7 2e2/h).

By symmetry, one would expect that in addition to phonon mode I in figure 3, there would
be a phonon mode, nearly degenerate in energy, with the two end atoms in the chain vibrating
in antiphase. Similarly, one would expect there to be a phonon mode, nearly degenerate with
mode II, but with the two strong dimers vibrating in antiphase. Indeed, these degenerate modes
are present in each case. It might then seem puzzling that, out of such nearly degenerate pairs
of modes, only one would show up in a significant way on the conductance curve. To see how
that might happen, take, as a simplified example, an infinite linear atomic chain with just two
perturbed bonds a distance x apart. Consider the two cases where these bonds are perturbed
by the same amount in the same sense or by the same amount in opposite senses. Consider
the matrix element for scattering between plane-wave electron states with opposite momenta
in each of these two cases. It is not hard to see that these matrix elements would differ from
each other by a factor of [1 + exp (2ikx)]/[1 − exp (2ikx)], where k is the electron wavevector.
Therefore, depending on the values of k and x , electrons may couple preferentially to one of
these two realizations of the perturbation. In our case, the electron wavefunctions near the
chain ends may be expected to be more complicated than simple plane waves, but the point
remains. Indeed, in the case of the eight-atom chain, the Einstein-like mode responsible for the
analogue of conductance drop I has the end atoms in antiphase, and the mode for the analogue
of drop II has the two strong dimers in antiphase.

Let us now consider the quantitative aspects of the conductance curves in figure 2. Each of
the two dominant conductance drops, I and II, shifts down in voltage with increasing tension.
Increasing tension results in a reduction in bond stiffness, and hence in a reduction in phonon
frequency. Hence, via equation (24), the voltage at which each conductance drop occurs
decreases with increasing tension. The reduction in phonon frequency with increasing tension
results in an increase in the zero-point vibrational amplitude for each phonon mode. The
increased electron–phonon scattering cross-section may be expected to cause an increase in
the size of the corresponding conductance drop. Qualitatively, this may also be seen from the
factors of 1/

√
ω j in the electron–phonon coupling term given in equation (19)4. This effect is

clearly visible in the case of conductance drop I in figure 2. The corresponding phonon mode,
mode I in figure 3, once again, involves the floppiest bonds in the system, which is where the
strain may be expected to be localized.

A limitation of the present calculations is the use of a finite submatrix of the full, infinite
dynamical response matrix for the electrode–junction–electrodesystem. This produces a finite
set of discrete phonon modes and hence a set of discrete conductance drops, as in figure 2. To
overcome this limitation, one must allow the junction phonons to be coupled to the continua
of phonon modes in the adjoining electrodes, producing a continuous set of global phonon
modes for the electrode–junction–electrode system. The summations over j in equations (23)
and (24) would then be replaced by appropriate integrals over phonon frequency, and the
differential conductance curve in figure 2 would change its character from being step-wise to
being continuous. Such improved calculations will not be considered in the present paper,
except to note the following points. As we have seen, the great variation in the effective

4 The precise functional dependence of the magnitude of the jump on phonon frequency (or, equivalently, on voltage)
is difficult to gauge in a simple way, however. While the dominant dependence can be understood in terms of the factor
of 1/

√
ω j in equation (19), the size of the conductance drops in equation (24) will have a further weak dependence

on elongation due to the fact that both the hopping integrals and the electronic Green function in the relaxed structure
will vary, albeit weakly, with strain.
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spring constant along the chain makes chain phonons quasi-bound resonances, localized in
different parts of the chain. Two examples of such localized chain phonons are modes I and II
in figure 3: atoms in the domelike contacts on either side of the chain are hardly involved in
these modes. The two weak end bonds in the chain act as a double barrier for phonons, leading
to the formation of a set of additional quasi-bound phonon resonances in the intermediate
section of the chain. Like any resonant wave phenomenon, these quasi-bound chain phonons
would be very sensitive to any additional scattering in the system. Hence, in opening the
junction to the phonon banks in the reservoirs, it would be essential to ensure that no artificial
phonon scattering is introduced at the junction–electrode interfaces, such as might result from
an injudicious choice of model for phonons in the electrodes and their coupling to the junction.
Beyond that, we expect that opening the junction phonons to the electrodes would get rid of
the steplike nature of the conductance curves in figure 2, but would otherwise preserve the
shape of the curve. In particular, in view of the high degree of localization of phonon modes I
and II in the chain, we expect any broadening of conductance features I and II to be small.

Recently, the inelastic current–voltage characteristics of atomic Au chains have been
measured experimentally [6, 7]. There is both significant agreement and significant
disagreement between the experimental measurements and the present results. Experiment
shows a single dominant conductance drop. This drop agrees well with our drop I in figure 2,
both in energy and in its response to elongation of the junction. The disagreement with the
present results is that the conductance drop in experiment has a significant energy width,
5–10 meV, and there is no sign, experimentally, of our conductance drop II. There are two
possibilities: either drop II does not occur at all in experiment or it is not resolved. It is
possible that in experiment the change in dimensionality from the electrodes into the chain
is gentler than in the geometry in figure 1. For example, especially under high tension, a
distortion in the domelike contacts adjoining the chain could create a situation where the chain
is effectively bonded to just two, rather than three, contact atoms. Under a more gradual
change in dimensionality, one would expect the variation in bond strength along the chain to
be suppressed, with bonds AB and EF stronger, and BC and DE weaker, than at present. That
would have the simultaneous effects of bringing phonon modes I and II from figure 3 closer
in energy and of making them less localized spatially, and thus broader in energy5. Therefore,
one possible explanation is that the experimentally observed single broad conductance drop
is in fact an unresolved agglomeration of our drops I and II. Another possible explanation is
that the chain of Au atoms is a zig-zag arrangement, as suggested by recent density functional
calculations [17]. Conductance drop I would still occur at about the same voltage because the
end atoms of the chain would still be the most weakly bound. However, at higher voltages, in
the zig-zag structure, transverse modes might be excited in addition to longitudinal ones. As
a result of this relaxation of the selection rule that restricts excitations to longitudinal modes
in our straight chains, in the zig-zag structure conductance drop II may be lost in a host of
additional excitations and thus not seen experimentally. A definitive resolution of the question
of what happens to drop II in experiment requires more work.

4. Summary

The bond strengths, and the corresponding effective spring constants, vary greatly in a chain
junction such as that in figure 1. As is argued above, as well as in [2], this results from the
relation between coordination number and bond strength in metallic bonding. Therefore, we
do not expect the above results to change in a qualitative way with the details of the electronic

5 We are grateful to Jan van Ruitenbeek for suggesting this line of thought.
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model. The dramatic variation in the dynamical matrix elements shown in figure 4 indicates
that it is not appropriate to think of phonons in the chain as free waves. Instead, they are more
accurately described as quasi-bound resonances, localized in various parts of the chain. The
factors that determine which of these phonon modes couple most strongly to the electrons are to
be sought in the specific local nature of the phonons and in the local electronic structure. Thus,
as argued above, electrons couple strongly to mode I in figure 3 because of the large vibrational
amplitude of that mode, whereas mode II couples well to the electrons because of the enhanced
local electronic density of states. We have been able to reproduce the experimentally observed
inelastic current–voltage spectral feature, reported in [6, 7], and to capture both its energy and
its response to tension. Further investigation would be necessary to determine whether our
second main conductance feature, drop II in figure 2, is altogether absent in experiment (and
if so why), or is not resolved, as was speculated above.
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